Carbon Sequestration and Greenhouse Gas Budgets in Restored Tidal Wetlands

> Sierra Club May 13 2021

Patty Oikawa

Patty.oikawa@csueastbay.edu

Department of Earth and Environmental Sciences

Cal State East Bay

Outline

- I. Natural Climate Solutions and Carbon Markets
- II. Carbon Cycling in Tidal Wetlands
- III. 2 Local Case Studies: Eden Landing Ecological Reserve and Suisun Marsh

Negative Emissions

• To avoid >1.5°C, some form of negative emission tech with carbon storage on land or sequestration in geological reservoirs is required

Global total net CO2 emissions

Billion tonnes of CO₂/yr

IPCC Special Report 2018

Carbon Market Systems

Solidarity.org

California Carbon Offset Protocol

- Offset protocol approved by American Carbon Registry
 - CA Air Resources Board recommended protocol for adoption
- First issuance of voluntary credits Spring 2020
- CA Dept of Water Resources 1,700 acres wetland restoration project
 - Received \$62/acre-- in compliance market likely \$200-300/acre
- More projects in the pipeline

You are here: Home » Carbon Accounting » Standards & Methodologies » Restoration of California Deltaic and Coastal Wetlands

Restoration of California Deltaic and Coastal Wetlands

The American Carbon Registry partnered with the Sacramento–San Joaquin Delta Conservancy, HydroFocus, University of California Berkeley and Tierra Resources to develop a new carbon offset

Tidal Wetland Carbon Cycling

$NECB = NEP - F_{CH4} - F_{L}$

- Net ecosystem production (NEP, also known as –NEE; net ecosystem exchange of CO₂) is the net result of photosynthesis (GPP) and ecosystem plant and microbial respiration (R_{eco})
- F_{CH4} is methane (CH₄) flux
- F_L is the net lateral (hydrologic) flux including fluxes of DIC (dissolved inorganic carbon), DOC (dissolved organic carbon), POC (particulate organic carbon) and methane

Atmospheric Carbon Exchange: Eddy Covariance

Measure covariance of vertical wind velocity and concentrations of trace gases

$$F = \overline{w'c'}$$

c = mixing ratio of trace gas w = vertical wind velocity

 $w' = w - \overline{w}$

$$c' = c - \bar{c}$$

Lateral Carbon Exchange

Field sensors deployed in tidal channel measuring:

- 1. Water velocity, depth
- 2. Turbidity (proxy for POC)
- 3. fDOM (proxy for DOC)
- 4. Dissolved CO₂ (proxy for DIC)
 Calculate flux from mass volume of water exchange*concentration on Carbon

Kyle Nakatsuka, USGS

Suisun Marsh (Rush Ranch)

- Most extensive brackish marsh complex in California
- Mean tidal range: 1.72 m, Salinity range: 1 9 ppt (mesohaline)
- Water quality measurements recorded since 1995 (blue pin)
- CO₂ and CH₄ atmospheric exchange collected since 2014 (red pin)
- Lateral C flux (DIC, DOC, POC) since 2018

Bogard et al. 2020 GBC, Knox et al. 2018, JGR Biogeosciences; Callaway et al. 2012, Estuaries and Coasts

Eden Landing Ecological

Reserve

- Hayward, California
- Measuring atmospheric carbon fluxes since 2018
- Installed hydrologic flux station Aug 2020
- Mount Eden Creek Marsh
- Restored tidal marsh (2008)
- Salinity >30 ppt
- Mean elevation of 1.7m
- Tidal range of 2.4m
- Pickleweed (Salicornia) and Cordgrass (Spartina)

Kyle Nakatsuka, USGS

Atmospheric Carbon Fluxes at Eden Landing and Rush Ranch

- Average Annual removal of CO₂= 424.8 g C-CO₂ m⁻² yr⁻¹ (SD= 44.9)
- Average Annual emission of CH₄ = 0.5 g C-CH₄ m⁻² yr⁻¹ (SD=0.3)

- Average Annual removal of CO₂= **287.3** g C-CO₂ m⁻² yr⁻¹ (SD= 94.5)
- Average Annual emission of CH₄ = 0.91 g C-CH₄ m⁻² yr⁻¹ (SD=0.3)

Between 47 – 59 % of fixed carbon retained on site Next Steps:

- Expand analysis across multiple years
- Preliminary analysis show similar dynamics at EL

Bogard et al. 2020 GBC

Back of Envelope Upscaling

- Assume 50% C remains in wetland
 - 200 g C m⁻² yr⁻¹
- Eden Landing Ecological Reserve =6400 acres
- 5184 MT C yr⁻¹
- Or 4000 cars off the road

Future Work

- Constrain the DIC fluxes (CO₂, carbonate, bicarbonate)
- Calculating NECB for both sites for multiple years
- Integrate findings into a biogeochemical model
- Publish model online in accessible format

Summary

- Tidal Wetlands in San Francisco Bay remove carbon from the atmosphere and store it in soils
- 2 case studies demonstrate high CO₂ removal with ~50% stored in the wetland
- tidal wetlands with salinity range of 9-35ppt show negligible CH₄ emissions
- A GHG protocol has been written to help finance wetland restoration in the Bay Delta and is recommended for adoption in the CA compliance market
- Tidal wetland restoration is a natural climate solution that can play a significant role in how we fight climate change

Acknowledgements

CDFW, South Bay Salt Pond Restoration Project

Postdocs: Ellen Stuart-Haentjens, Gwen Miller, Sophie Taddeo

Solano Land Trust, SF Bay National Estuarine Research Reserve,

CSU The California COAST State University

Co-authors: PIs: Brian Bergamaschi, Sara Knox, Iryna Dronova, Lisamarie Windham-Myers

Graduate Students: Maiyah Matsumura, Julie Shahan, Michael Najarro, Sarah Russell

Ellen Stuart-Haentjens

Maiyah Matsumura

Julie Shahan

Lisamarie Windham-**Myers**

