

GridSolar, LLC The GridSolar Pilot Project for Grid Reliability

Sierra Club of Maine

Dr. Richard Silkman, Founding Partner September 16, 2017

Electric Grid Reliability: The Problem

Grid Reliability is generally a Peak Load Problem

• ME Turnpike Analogy

Electric Grid Reliability: Potential Solutions

- Transmission Solution Build more Transmission to bring power from away <u>into</u> the Region
- Non-Transmission Alternative or "NTA" Solution
 Manage Load and develop new Distributed Generation within the Region

Yesterday's Electric Grid

Large Central Generating Stations designed to serve 24 x 7 industrial loads using high voltage transmission lines and centralized dispatch control

Tomorrow's Electric Grid

Distributed Energy Resources located near commercial loads that are weather sensitive (more peaked) using distributed control technologies

Smart Electric Grids

Contrasting Visions

Utility Vision in which peak load is met by large generating facilities located far from load requiring expensive transmission systems

GridSolar Vision in which peak load is met through a smart electric grid using energy efficiency, DR, smallscale distributed solar generation and other resources located close to load

Boothbay Pilot

Radial nature of electric service and local distribution circuits on the Boothbay peninsula defines the electrical region for the Pilot Project – Total Peak load – Approx. 30 MW.

50 KM 50 Miles

Boothbay Harbor, Maine

Shock and Sag

- When a Reliability Event
 Occurs, the electric grid has two responses:
 - "SHOCK" frequency and voltage responds immediately, which can cause power failure.
 - "SAG" power flows on specific lines and circuits exceeds carrying capacity causing them to overheat and sag. If sag exceeds clearance, they will short causing power failure.

Boothbay Pilot

Hybrid Solution

- CMP Voltage Support investments to address instantaneous response issues – "SHOCK"
- NTA Options Manage thermal conditions on conductor feed into the region – "SAG"
- Benefit Avoid \$18 million upgrade to CMP Sub-Transmission Line serving the region.

Pilot Design

- Term 3 Years, option to 10 Years
- Need up to 2 MW of NTA Resources
 - modular, can scale with load

• NTA Types – <u>Target</u> 250 kW each

- Efficiency
- Renewable DG (125 kW Solar)
- Non-renewable DG (preference net zero CO2)
- Demand Response
- Competitive Bids PUC approves all contracts
- Cost are recoverable in utility rates

NTA Resources

kW	RFP I	RFP II	Totals	Pct. \$/kW M
Conservation	237 0	111 3	348 3	19% \$10.47
Solar	168.8	106.8	275.6	15% \$13.19
BUGS	500.0	0.0	500.0	27% \$20.63
Demand Response	0.0	250.0	250.0	13% \$57.65
Battery	0.0	500.0	500.0	27% \$75.99
Totals	905.8	968.0	1,873.8	100%

GridSolar Ops Center - Portland

o Dispatch (SCADA) System

- Direct/Cellular Link to Active NTAs
- Data loggers at Passive NTAs

Command Interface

- CMP dispatch: load, location, duration
- GridSolar: define & issue dispatch order
 Automated, failsafe backup
- Real time monitoring & data logging
- CMP collect data at substations

Boothbay Pilot – Response

Actual and Reconstituted Loads on August 11, 2016 for CMP's Boothbay Circuit 209

Boothbay Pilot – Response

Response of Passive and Active Distributed Energy Resources – August 11, 2016

\$75.75 Million

GS Rev.Req.

\$5.87

Million

\$1.75 Million

Comparative Costs

Findings/Conclusions

- 1. NTAs can provide the same degree of grid reliability at less cost than transmission solutions
- While Transmission Costs keep going up and up and up – NTA costs are going down and down and down
- 3. We are currently utilizing only a tiny fraction of the capabilities of CMP's increasingly smart electric grid
- Public policies should encourage not discourage customer installation of Distributed Energy Resources

Last Thought ...

DO NOT underestimate how difficult it will be to implement the lessons learned from the Boothbay Pilot

The barriers utilities will erect – while not insurmountable – are very formidable ... e.g. NYS REV, CMP – Net Metering

GridSolar, LLC

Contact Information <u>www.gridsolar.com</u> (207) 772-6190